If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-90=0
a = 1; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·1·(-90)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*1}=\frac{0-6\sqrt{10}}{2} =-\frac{6\sqrt{10}}{2} =-3\sqrt{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*1}=\frac{0+6\sqrt{10}}{2} =\frac{6\sqrt{10}}{2} =3\sqrt{10} $
| 100+51+3+2x=180 | | -4x=6=2x-3 | | 8x-6=-2(-4x+3) | | 4x=1=4 | | a/2=46 | | 7x-15=3x-8 | | –5f=–4f+7 | | (-2x)+8x-18+5x=(-x)+14-5x+2 | | 1000+.1x=x | | 3=30x=0 | | 11x+(-18)=(-6x)+16 | | 7(9+5x)=30 | | 20+2x=70 | | u/3+-3.1=-7.9 | | 6(x+10)=438 | | 1=q3− 3 | | 1h+18=3 | | 2x=5(20) | | 6(7x+10)=480 | | (5x-13)=(4x+24) | | 8=(n-4) | | 4x+-8=-24 | | 2(10+6x)=33 | | -32=-8+4y | | t−19=–13 | | –3+4p=5p | | 7q-q-6q+3q=12 | | 7x-10=x+-50 | | –7n=–6n+7 | | 2(30+y)=5y | | 16k-6k+4k-14k+4k=16 | | -4=v/4+4 |